Part Number Hot Search : 
LS5469 2SC162 MAX198 BAV21W BU4829G TEA6320T 265004 TFT1350
Product Description
Full Text Search
 

To Download HA13561F Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 HA13561F
Combo (Spindle & VCM) Driver
ADE-207-182 (Z) 1st Edition July 1996 Description
This COMBO Driver for HDD application consists of Sensorless Spindle Driver and BTL type VCM Driver. Bipolar Process is applied and a "Soft Switching Circuit" for less commutation noise and a "Booster Circuit' for smaller Saturation Voltage of Output Transistor are also implemented.
Features
* Soft Switching Driver Small Surface Mount Package: FP-80E (QFP80 Pin) Low thermal resistance: 35C/W with 6 layer multi glass-epoxy board * Low output saturation voltage Spindle 0.8 V Typ (@1.0 A) VCM 0.8 V Typ (@0.8 A)
Functions
* * * * * * * * * * 1.8 A Max/3-phase motor driver 1.2 A Max BTL VCM Driver Auto retract Soft Switching Matrix Start up circuit Booster Speed Discriminator Internal Protector (OTSD, LVI) POR Power monitor
HA13561F
Pin Arrangement
RETON RETPOW Vpsv LVI2
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61
VBST VCMP VCMN BC2 BC1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
RS
TAB
OPIN(-) VCTL OPIN(+) RESINH VREF1
60 COMPOUT 59 NC* 58 NC* 57 GAIN 56 VCMENAB 55 54 53 52 51 50 49 48 47 46 45 POR 44 SPNENAB 43 READY 42 CLOCK 41 CNTSEL
TAB
TAB
W RNF PCOMP CT V
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
U C-PUMP CLREF R1 Vpss
TAB
*NC : No internal connection Please note that there is no isolation check between pin 58 and pin 59 at the testing of this IC. (Top View)
2
Vss LVI1 DELAY COMM POLSEL
HA13561F
Pin Description
Pin Number Pin Name 1 2 3 4 5 6 to 15 16 17 18 19 20 21 22 23 24 25 26 to 35 36 37 38 39 40 41 42 43 44 45 46 to 55 56 57 VBST VCMP VCMN BC2 BC1 GND W RNF PCOMP CT V U C-PUMP CLREF R1 Vpss GND VSS LVI1 DELAY COMM POLSEL CNTSEL CLOCK READY SPNENAB POR GND VCMENAB GAIN Function Boosted voltage output to realize the low output saturation voltage Output terminal on VCM driver Output terminal on VCM driver To be attached the external capacitor for booster circuitry ditto Ground pins W phase output terminal on spindle motor driver Sensing input for output current on spindle motor driver To be attached the external capacitor for phase compensation of spindle motor driver To be attached the center tap of the spindle motor for B-EMF sensing V phase output terminal on spindle motor driver U phase output terminal on spindle motor driver To be attached the external integral constants for speed control of spindle motor Reference voltage input for current limiter of spindle motor driver To be attached the external resistor for setting up the oscillation frequency of start-up circuitry and the gain of speed control loop of spindle motor driver Power supply for spindle motor driver Ground pins Power supply for small signal block Sensing input for power monitor circuitry To be attached the external capacitor to generate the delay time for power on reset signal To be attached the external capacitor for setting up the oscillation frequency To be selected the input status corresponding to the pole number of spindle motor To select the count Number of Speed Discriminator Master clock input for this IC Output of speed lock detector for spindle motor To select the status of spindle motor driver Output of power on reset signal for HDD system Ground pins To select the status of VCM driver To select the Transfer conductance gm of VCM driver
3
HA13561F
Pin Description (cont)
Pin Number Pin Name 58 59 60 61 62 63 64 65 66 to 75 76 77 78 79 80 NC NC COMPOUT VREF1 RESINH OPIN (+) VCTL OPIN (-) GND LVI2 Vpsv RETPOW RETON RS Function No function ditto Comparator output to detect the direction of output current on VCM driver Regulated voltage output to be used as reference of peripheral ICs Used for inhibiting the restart function of the spindle motor driver after power down Non inverted input of OP.Amp. to be used for filtering the signal on PWMOUT OP. Amp. output, this signal is used as control signal for VCM driver output Inverted input of OP.Amp. to be used for filtering the signal on PWMOUT Ground pins Sensing input for power monitor circuitry Power supply for VCM driver Power supply for retract circuitry To be attached the base terminal of external transistor for retracting Sensing input for output current on VCM driver
4
HA13561F
Block Diagram
VSS (+5V) VSS C102 36 VBST B-EMF AMP. RESINH 62 C103 COMM 39
C-PUMP
Vps(+12V) C101 25 19 SOFT SWITCHING MATRIX CT
Vpss
U SPINDLE DRIVER V W
21 20 16 17
U V W RNF C110 C111
START-UP CIRCUIT
COMMUTATION LOGIC
22 C2 CLREF R1b C1 23 CHARGE PUMP CURRENT CONTROL
R1 24 R1a 44 SPNENAB POLSEL 40
PCOMP Vpsv
18 77
(D1) CLOCK 42 (5MHz Typ) CNTSEL 41 READY 43 VCTL 64 OPIN(-) 65 OPIN(+) 63 Vref1 61 NC 59 NC 58 GAIN 57 VCM ENAB 56 BC1 5 C104 4 BC2 1 C105 VBST 1/32
SPEED DISCRI. (CNT) SPEED READY
RETPOW RETON
C109 78 D2 79 D1 R108 RS 3 Qret
VBST
RETRACT DRIVER P
- +
OPAMP.
Vref1 (=4.6V)
+ VCM DRIVER N - OTSD - +
VCMP 2
VCMN 80 60 RS
CX RX COMP OUT
RL
VBST
BOOSTER
Vss
Vps
POWER MONITOR
COMPARATOR POR Delay GND 38
6 to 15,26 to 35 46 to 55,66 to 75
R105 Vss(+5V) 45 POR (L:RESET)
LVI1 Vss R101 (+5V) R102
37 76
LVI2
R103 R104
Vps (+12V)
DELAY C106
5
HA13561F
Truth Table
Table 1
SPNENAB H Open L
Truth Table (1)
Spindle Driver ON Cut off Braking
Table 2
VCMENAB H L
Truth Table (2)
VCM Driver ON Cut off
Table 3
OTSD not Active Active
Truth Table (3)
Spindle Driver See table 1 Cut off VCM Driver See table 2 Cut off Retract Driver Cut off ON
Table 4
POLSEL H Open L
Truth Table (4)
(D1) -- 1/12 1/18 Comment Test Mode for 8 poles motor for 12 poles motor
Table 5
CNTSEL H Open L
Truth Table (5)
CNT 2605 2084 1736 Rotation Speed (at CLOCK = 5 MHz) 3,600 rpm 4,500 rpm 5,400 rpm
6
HA13561F
Table 6
RESINH H L
Truth Table (6)
Spindle Driver Inhibiting the restart after power down Not inhibiting the restart after power down
Table 7
GAIN H L
Truth Table (7)
VCM Driver High Gain Mode Low Gain Mode
7
HA13561F
Timing Chart
1. Power on reset (1)
Vhys Vsd Vps and VSS
t
POR
tDLY
1.0V MAX 0 t
Note:
1.
How to determine the threshold Voltage Vsd and the delay time tDLY both are shown in the external components table.
2. Power on reset (2)
VPS or VSS
tpor
POR
Spindle Driver
ON OFF ON OFF
VCM Driver
Retract Driver
Note:
2.
Retract driver need B-EMF voltage or another power supply.
,,,, ,,,, ,,,,
tpor <1s
<1s
Retract
8
HA13561F
3. Motor start-up seaquence
(a) Timing chart of start-up seaquence SPNENAB
Rotation Speed
Internal READY
,,, , ,,
Open No Synchronous Driving Driving by B-EMF sensing 0 Switching tdelay*2 Soft Switching*3 t *3. The turning point of driving mode from switching synchronize to the turning point of READY output from Low to High. Motor on Synchronous driving Driving by B-EMF sensing (not stop) Motor stop detector
No+No*1
No-No*1
READY (Pin 43)
Note *1. Speed lock detection range No is as follows. No =1.2% when CNTSEL=H =1.5% when CNTSEL=Open =1.8% when CNTSEL=L *2. READY output goes to High, if the rotation speed error keeps to be less than No longer time than tdelay. 500 * 107 tdelay= [ms] fclk [Hz]
(b) Retry circuitry for misstart-up
(Motor stop) (Motor off)
The HA13561F has the motor stop detector as shown hatching block. This function is monitoring the situation of the motor while the motor is running by B-EMF sensing. If the motor will be caused a misstarting up, the motor will be automatically restarted within 200 ms after the motor stopped. This function increase the reliability for the motor starting up.
,, ,,
9
HA13561F
4. Braking & Shut down the Spindle Driver
SPNENAB
Note:
The SPNENAB should be selected the open state after braking to reduce the supply current from Vps and V SS .
,, ,,
Open Open ON > 20s CUT OFF BRAKING CUT OFF
Vth1 Vth2
5. Start-up of the Spindle motor
Open
SPNENAB
COMM
GND
,
2TCOMM
tCOMM (see External Components Table)
IU
SOURCE 0 SINK
IV
SOURCE 0 SINK
SOURCE IW 0 SINK
10TCOMM
12TCOMM
14TCOMM
16TCOMM
16TCOMM
4TCOMM 4TCOMM 4TCOMM 4TCOMM 4TCOMM
6TCOMM
8TCOMM
Driving by B-EMF sensing
Synchronous Driving for motor start up not detecting the B-EMF detecting the B-EMF
10
HA13561F
6. Acceleration and Running the spindle motor
+ UBEMF 0 - + VBEMF 0 - + WBEMF 0 -
(1) Acceleration(switching mode) SOURCE Iu 0 SINK SOURCE Iv 0 SINK SOURCE Iw 0 SINK (2) Running (soft switching mode) SOURCE Iu 0 SINK SOURCE 0 SINK SOURCE Iw 0 SINK Iv
11
HA13561F
Application
VPS (+12V) Vpss 25 C101 CT 19 U 21
5 BC1 C104 4 BC2 C105 1 VBST C103 39 COMM 23 CLREF R1b C2 R1a 24 R1 R2 22 C-PUMP C1 40 POLSEL 41 CNTSEL 43 READY 42 CLOCK 44 SPNENAB 56 VCMENAB 57 GAIN 62 RESINH HA13561F
V 20 W 16 RNF RNF 17 C110 PCOMP 18 Vpsv 77 C109 RETPOW 78 D2 RETON 79 Qret D1 R108 VCMP 2 R104 R103 C111
RWMIN
R8 R7 R3
R5 C5
61 VREF1 65 OPIN(-) R6
C3 R4 VSS (+5V)
64 VCTL 63 OPIN(+) C4 60 COMPOUT VCMN 3 CX RX RS 80 LVl2 76 45 POR LVl1 37 GND
RS
RL
R105
R101
R102
C102
36 VSS
38 DELAY C106
12
HA13561F
External Components
Parts No. R1a R1b R2 R3 to R8 R101, R102 R103, R104 R105 R108 RS Rnf RX C1, C2 C3 to C6 CX C101 C102 C103 C104 C105 C106 C109 C110, C111 Qret D1 D2 Recommended Value (R1a + R1b) 10 k (R1a + R1b) 10 k -- -- -- -- 5.6 k -- 1.0 -- -- -- -- -- 0.1 F 0.1 F -- 0.22 F 2.2 F -- 0.1 F 0.33 F -- -- TBD Integral constant PWM filter Setting of LVI1 voltage Setting of LVI2 voltage Pull up Limitation for Retract current Current sensing for VCM Driver Current sensing for Spindle Driver Reduction for gain peaking Integral constant PWM filter Reduction for gain peaking Power supply by passing Power supply by passing Oscillation for start-up for booster for booster Delay for POR Power supply by passing Phase compensation Retract Driver Protection for Qret Protection for parasitic phenomena 12 12 8 6 12 10 1 11 3 9 11 3 9 7 7 Purpose V/I converter Note 1, 4, 6
Notes: 1. Output maximum current on spindle motor driver Ispnmax is determined by following equation. R1b V Ispnmax = * R1 [A] R1a + R1b RNF (1) where, V R1: Reference Voltage on Pin 24 [V] (= 1.3) 2. Input clock frequency fclk on pin 42 is determined by following equation. 4 fclk = * NO * P * D1 * (CNT - 0.5) [Hz] 5 where, NO: Standard rotation speed [rpm] P: Number of pole D1: Dividing ratio on divider 1
(2)
13
HA13561F
D1 = 1/12 (when Pin 40 = Open) for 8 pole motor = 1/18 (when Pin 40 = Low) for 12 pole motor CNT:Count number on speed discriminator CNT = 2605 (when Pin 41 = High) = 2084 (when Pin 41 = Open) = 1736 (when Pin 41 = Low) 3. Integral constants R2, C1 and C2 can be designed as follows. NO 1 O = *2** [rad/s] 60 10 R2 = 1 Rnf * J * O * NO * (R1a + R1b) * 9.55 VR1 * KT * Gctl 1 10 * O * R2 [F] [F] (5) (6) [] (4)
(3)
C1 =
C2 = 10 * C1
where, J: Moment of inertia [kg*cm*s2] KT: Torque constant [kg*cm/A] Gctl: Current control amp gain from pin 22 to pin 17 (= 0.5) 4. It is notice that rotation speed error Nerror is caused by leak current Icer2 on pin 22 and this error depend on R1a and R1b as following equation. (R1a + R1b) Nerror = Icer2 * * 100 [%] VR1 (7) where, Icer2: Ieak current on pin 22 [A] 5. Oscillation period tCOMM on pin 39 which period determine the start up characteristics, is should be chosen as following equation. 1 1 J J tCOMM = * to * [s] P * KT * Ispnmax P * KT * Ispnmax 8 4 (8) 6. The capacitor C103 on pin 39 can be determined by tCOMM and following equation. VR1 tCOMM 1 C103 = * * [F] R1a + R1b VthH - VthL 4
(9)
where, Vth H : Threshold voltage on start up circuit [V] (= 2.0) Vth L: Threshold voltage on start up circuit [V] (= 0.5) 7. LVI operatig voltage Vsd1, Vsd2 and its hysteresis voltage Vhys1, Vhys2 can be determined by following equations. for VSS Vsd1 = 1 + R101 * Vth4 R102 R101 R102 [V] (10) [V] (11)
Vhys1 = 1 +
* Vhyspm
14
HA13561F
for Vps Vsd2 = 1 + R103 * Vth3 R104 R103 R104 [V] (12) [V] (13)
Vhys2 = 1 +
* Vhyspm
where, Vth3, Vth4: Threshold voltage on pin 37 and pin 76 [V] (= 1.39) Vhyspm: Hysteresis voltage on pin 37 and pin 76 [mV] (= 40) Shut down voltage Vsd1, Vsd2 can be designed by the following range. Vsd1 4.25 [V], Vsd2 10 [V] 8. The delay time tDLY of POR for power on reset is determined as follows. C106 * Vth5 tDLY = [s] ICH3
(14)
where, Vth4: Threshold voltage on pin 38 [V] (= 1.4) I CH3: Charge current on pin 38 [A] (= 10) 9. The differential voltage (Vctl - V REF1) using for control of VCM driver depend on PWMDAC inputs LSB, MSB as follows. D - 50 R6 Vctl - VREF1 = 2 * VREF1 * PWM * * HFLT(s) 100 R5 (15) where, DPWM: Duty cycle on PWMIN [%] HFLT(S): Transfer function from pin 62 (PWMOUT) to pin 64 (Vctl) as shown in equation (17) To be satisfied with above equation (15), it is notice that the ratio of R6 to R7 must be choosen as shown below. R8 R6 1 =2* * R7 R5 1 - R6 R5 (16) HFLT(s) = 1 1 + s * C5 * R// - C3 * (R// + R3) * R6 + C4 * (R// + R3 + R4) R5 + s2 * C5 * C4 * R// * (R3 + R4) - C5 * C3 * R// * R3 * R6 + C3 * C4 * R4 * (R// + R3) R5 + s3 * C3 * C4 * C5 * R// * R3 * R4 (17) R// = where, R7 * R8 R7 * R8
(18)
If you choose the R// << R3, then equation (17) can be simplified as following equation. 1 1 HFLT(s) = * 2 1+ s 1 +2 * * s + s O n n (19)
15
HA13561F
where, O = 1 C5 * R// 1 C3 * C4 * R3 * R4 (20)
n =
(21)
=
R6 C4 * (R3 + R4) - C3 * R3 * R5 2 * C3 * C4 * R3 * R4
(22)
10. The relationship between the output current Ivcm and the input voltage (Vctl - V REF1) on VCM driver is as follows. Ivcm(s) = Vctl - VREF1 * Kvcm * 1 * Hvcm(s) Rs
(23)
where, Vctl: VREF1: Kvcm:
Input control voltage for VCM driver on pin 64 [V] Reference voltage on pin 61 [V] (= 4.6) DC gain of VCM driver (= 1.82 for High gain mode) (= 0.45 for Low gain mode) Hvcm(s): Transfer function of VCM driver as shown following equation 1 Hvcm(s) = s s2 1 + 2 * VCM * + VCM VCM
(24)
where, VCM = P * Rs Lm
(25) RL Rs 1 P Rs Lm
VCM =
1 2
* 1+
*
*
(26)
where, p: Bandwidth of internal power amplifiers for VCM driver [rad/s] (= 3**106) Lm: Inductance of the VCM coil [H] RL: Resistance of the VCM coil [] and from above equations the -3 dB bandwidth f VCMC of VCM driver is as following equation. fVCMC = VCM 2* * 1 - 2 * VCM2 + 2 * VCM2 - 1
2
+1 (27)
16
HA13561F
11. The frequency response of VCM driver maybe have a gain peaking because of the resonation of the motor coil impedance. If you want to tune up for this characteristics, you can reduce the peaking by additional snubber circuit R X and CX as follows. BTL Driver + - R3 RS - + R3 P RS N RX CX
Coil
1/2 VPS
Figure 1 VCM Driver Block Diagram
20 10
Normal
IO (dB)
0 -10 -20
CX = 0.22F RX = 560
100
1k
10k
100k
Frequency (Hz) (for example) RL = 14.7 , RS = 1 , L = 1.7 mH, Gain = L 12. The retract current Iret is determined by following equation. Vretpow - Vsat(Qret) - VF(D1) - VsatVL Iret = R108 + Rs + RL where, Vretpow: Applied voltage on pin 78 [V] Vsat (Qret): Saturation voltage of Qret [V] VF (D1): Foward voltage of D1 [V]
(28)
17
HA13561F
Absolute Maximum Ratings (Ta = 25C)
Item Power supply voltage Signal supply voltage Input voltage Output current-Spindle Symbol Vps VSS VIN Iospn (Peak) Iospn (DC) Output current-VCM Iovcm (Peak) Iovcm (DC) Power dissipation Junction temperature Storage temperature Notes: 1. 2. 3. 4. 5. PT Tj Tstg Rating +15 +7 VSS 1.8 1.2 1.2 0.8 5 +150 -55 to +125 Unit V V V A A A A W C C Notes 1 2 3
Operating voltage range is 10.2 V to 13.8 V. Operating voltage range is 4.25 V to 5.75 V Applied to Pin 40, 41, 42, 44, 56, 57 and pin 62 Operating junction temperature range is Tjop = 0C to +125C ASO of upper and lower power transistor are shown below. Operating locus must be within the ASO. 6. The OTSD (Over Temperature Shut Down) function is built in this IC to avoid same damages by over heat of this chip. However, please note that if the junction temperature of this IC becomes higher than the operating maximum junction temperature (Tjopmax = 125C), the reliability of this IC often goes down. 7. Thermal resistance: j-a 35C/W with 6 layer multi glass-epoxy board.
10
IC (A)
1.8 1
t=10ms t=50ms t=100ms
0.1 1
15 10 VCE (V)
100
Figure 2 ASO of Output Stages (Spindle)
18
HA13561F
10
IC (A)
1.2 1
t=10ms t=50ms t=100ms
0.1 1
15 10 VCE (V)
100
Figure 3 ASO of Output Stages (VCM)
19
HA13561F
Electrical Characteristics (Ta = 25C, Vps = 12 V, VSS = 5 V)
Item Supply current for VSS Symbol Min I SS0 I SS1 for Vps Ips0 Ips1 Logic input 1 Input low voltage VIL1 (GAIN) (RESINH) Input high voltage VIH1 -- -- -- -- -- Typ 5.8 21 1.7 19 -- Max 7.0 27 2.2 24 0.8 Unit mA mA mA mA V Test Conditions Applicable Pins Note
SPNENAB = Open 36 VCMENAB = L SPNENAB = H VCMENAB = H 36
SPNENAB = Open 25, 77 VCMENAB = L SPNENAB = H VCMENAB = H 25, 77 57, 62
2.0 -- -- -- 3.5 -- -- -- 2.0 -- -- -- 2.0 3.9 -75 75
-- -- -- -- -- -180 230 -- -- -- -- -- -- -- -105 105
-- 10 10 0.8 -- -260 330 0.8 -- 10 330 1.0 3.1 -- -150 150
V A A V V A A V V A A V V V A A Input = GND Input = 5.0 V Input = GND Input = 5.0 V 44 Input = GND Input = 5.0 V 56, 59 Input = GND Input = 5.0 V 42
Input low current I IL1 Input high current I IH1
Logic input 2 Input low voltage VIL2 (CLOCK) Input high voltage VIH2
Input low current I IL2 Input high current I IH2
Logic input 3 Input low voltage VIL3 (VCMENAB) Input high voltage VIH3
Input low current I IL3 Input high current I IH3
Logic input 4 Input low voltage VIL4 (SPNENB) Input middle voltage Input high voltage VIM4 VIH4
Input low current I IL4 Input high current I IH4
20
HA13561F
Electrical Characteristics (Ta = 25C, Vps = 12 V, VSS = 5 V) (cont)
Item Logic input 4 Input dead (SPNENB) current Symbol Min I DEAD -- -- Typ -- -- Max 10 1.0 Unit A V Test Conditions Applicable Pins Note 44 40, 41
Logic input 5 Input low voltage VIL5 (POLSEL) (CONTSEL) Input middle voltage Input high voltage VIM5 VIH5
2.0 3.9 -38 38
-- -- -53 53 0.8 -- -- -- 480
3.1 -- -75 75 1.1 0.5 0.7 2.0 530
V V A A V V V mA mV Input = GND Input = 5.0 V Ispn = 1.0 A Ispn = 0.35 A Ibreak = 0.6 A SPNENAB = Open VCLREF = 500 mV RNF = 1.0 RNF = 1.0 17 16, 20, 21
Input low current I IL5 Input high current Spindle driver I IH5
Total saturation Vsatspn -- voltage -- Saturation at braking Leak current Current limiter reference voltage Control amp gain Vbreak Icer1 VOCL -- -- 430
Gctl Vmin VR1 I CH1 I DIS1 Icer2 fclk Vth H Vth L
-- -- 1.06 40 -40 -- -- 1.6 0.3 21 -19
-2 100 1.17 45 -45 -- -- 1.8 0.5 23 -22
2 -- 1.28 50 -50 50 8.0 2.0 0.7 26 -25
dB mVp-p V A A nA MHz V V A A
17, 22 16, 20, 21 1
B-EMF amp. Input sensitivity Charge pump Reference voltage Charge current Discharge current Leak current Speed discri Operating frequency Start up circuit Threshold voltage
R1a + R1b = 24 22, 24 C-PUMP = 1.0 V
42 24, 39
Charge current Discharge current
I CH2 I DIS2
R1a + R1b = 24 k COMM = 1 V
21
HA13561F
Electrical Characteristics (Ta = 25C, Vps = 12 V, VSS = 5 V) (cont)
Item READY Output high voltage Output low voltage VCM driver Symbol Min Vohr Volr VSS - 0.4 -- Typ -- -- 0.8 0.4 -- -- -- 6.0 Max VSS 0.4 1.1 0.55 2 20 10 6.4 Unit V V V V mA mV mV V RL = 10 RS = 1.0 RS = 1.0 , RL = 28 RS = 1.0 , RL = 14 Higain-mode RS = 1.0 , RL = 14 Logain-mode RS = 1.0 , RL = 14 Ireton = 0.1 mA Vretpow = 4.0 V Vreton = 15 V, Vretpow = 15 V Iret = 0.1 A 79 3 78 2, 64, 80 2, 3 Test Conditions I O = -1 mA I O = 1 mA Ivcm = 0.8 A Ivcm = 0.4 A Vce = 15 V VCTL = OP (-) VREF = OP (+) 2, 80 2, 3 Applicable Pins Note 43
Total saturation Vsatvcm -- voltage -- Output leak current Total output offset voltage Icer3 Voff(H) Voff(L) Output quiescent voltage Total Gain Bandwidth Vqvcm -- -- -- 5.6
B
-- --
26 50 1.74
-- -- 5%
kHz kHz A/V
2, 3
1
Transfer gain
gm (H)
--
gm (L)
--
0.44
5%
A/V
Retract driver Retpow voltage Vretpow 0.8 Retout sink current Output leak current Low side saturation voltage OP Amp Input current Input offset voltage Common mode input voltage range Output high voltage Ireton Icer4 VsatVL 5 -- 0.1
-- 8 -- 0.23
-- -- 10 0.35
V mA A V
Iinop Vosop Vcmop
-- -- 0
-- -- --
500 (7)
nA mV
63, 65 1
Vps V - 0.2 -- V Iout = 1.0 mA 64
Vohop
Vps - 1.3
--
22
HA13561F
Electrical Characteristics (Ta = 25C, Vps = 12 V, VSS = 5 V) (cont)
Item OP Amp Comparator Output low voltage Input sensitivity Output low voltage Output high voltage Vref1 Output voltage Output resistance Power monitor Threshold voltage Hysteresis Threshold voltage Hysteresis POR Output low voltage Symbol Min Volop Vmin2 Volcp Vohcp Vref1 Ro1 Vth3 -- 9 -- VSS - 1.8 -- -- -- Typ -- 0 -- -- 4.6 -- 1.39 40 1.38 40 -- -- -- 1.4 12 -- 150 25 Max 1.1 -- 0.4 VSS 3% 5.0 +3% -2% 55 +3% -2% 55 0.4 0.4 10 5% Unit V mV V V V V mV V mV V V A V I O = 1 mA I O = 1 mA I O = 20 mA I O = 20 mA VSS = 5 V VSS = 5 V VSS = 4 V VSS = 4 V I O = 1 mA I O = 1 mA VSS = Vps = 1.0 V Vpor = 7 V 38 45 37 2 76 2 61 Test Conditions Iout = 1.0 mA Applicable Pins Note 64 2, 3, 60 60
Vhyspm 25 1 Vth4 --
Vhyspm 25 2 VOL2 VOL3 -- -- -- -- -- 10 125 --
Output leak current Threshold voltage Charge current Discharge current OTSD Operating temperature Hysteresis
Icer5 Vth5 I CH3 I DIS3 Tsd Thys
25% A -- -- -- mA C C 1 1
Notes: 1. Design guide only. 2. Variations of threshold voltage Vth3 and Vth4 depending on the power supply V SS are shown in Figure.4.
23
HA13561F
Threshold voltage Vth3, Vth4 (V) 1.42 1.41 1.40 1.39 1.38 Test condition of Vth4 1.37 1.36 1.35 1.34 1.33 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 Power supply VSS (V) Test condition of Vth3
Figure 4
24
HA13561F
Package Dimensions
Unit: mm
17.2 0.3
14
60 61 17.2 0.3
41 40 0.65
80 1
0.30 0.10
21 20
+0.20 -0.16
0.17 0.05
0.13 M
3.05 Max
2.70
1.60
0-5 0.10
0.10
0.8 0.3
Hitachi code EIAJ code JEDEC code
FP-80E -- --
25
Cautions
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.
Hitachi, Ltd.
Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL
NorthAmerica : http:semiconductor.hitachi.com/ Europe : http://www.hitachi-eu.com/hel/ecg Asia (Singapore) : http://www.has.hitachi.com.sg/grp3/sicd/index.htm Asia (Taiwan) : http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm Japan : http://www.hitachi.co.jp/Sicd/indx.htm For further information write to:
Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Strae 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322 Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533 Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180 Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX
Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.


▲Up To Search▲   

 
Price & Availability of HA13561F

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X